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A kinetic equation with a relaxation time model for wave-particle collisions is
considered. Similarly to the BGK-model of gas dynamics, it involves a projec-
tion onto the set of equilibrium distributions, nonlinearly dependent on
moments of the distribution function. An earlier existence result is extended to
bounded domains with reflecting boundaries and to initial conditions permitting
vacuum regions. The long time behaviour is investigated. Convergence on
compact time intervals (shifted to infinity) to the set of equilibrium solutions is
proven. The set of smooth equilibrium solutions is computed.
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1. INTRODUCTION

We investigate initial-boundary value problems for the kinetic equation

“t f+v · Nx f=Quf
(f)=Puf

(f) − f, (1)

where f=f(t, x, v) \ 0 denotes a particle distribution function, depending
on time t > 0, position x ¥ W … Rd (d ¥ N, W is a bounded domain with
piecewise C1 boundary), and velocity v ¥ Rd. The collision operator Quf

is
used in quasilinear plasma theory as a simplified model for wave-particle



interaction in cometary flows. The map Pu is a projection onto the set of
distribution functions isotropic around the mean velocity u:

Pu(f)(v)=
1

|Sd − 1|
F

S d − 1
f(u+|v − u| w) dw,

with Sd − 1 and |Sd − 1| denoting the unit sphere in Rd and its (d − 1)-
dimensional Lebesgue measure, respectively. By uf we denote the mean
velocity of the distribution function f, i.e., the ratio of the macroscopic
momentum density mf and the mass density rf:

uf=
mf

rf
, rf=F

R
d

f dv, mf=F
R

d
vf dv.

The kinetic equation (1) is considered subject to initial conditions

f(0, x, v)=f0(x, v), (2)

for (x, v) ¥ W×Rd. For the initial data we shall use the following assumptions:

,p > 1: f0 ¥ Lp(W × Rd), f0 \ 0, (3)

,r > 1: (1+|v| r) f0 ¥ L1(W × Rd). (4)

We impose reflecting boundary conditions

f(t, x, v)=f(t, x, vŒ), (5)

for t > 0, x ¥ “W, with specular or reverse reflection, i.e.,

(a) vŒ=v − 2(n(x) · v) n(x), or (b) vŒ=−v, (6)

where n(x) denotes a unit normal along “W.
For the physics modelled by (1), we refer the reader to refs. 11, 18–20.

Let us only remark that the collision operator describes the scattering
of cosmic rays (energetic particles) in an astrophysical plasma, caused by
random irregularities in the ambient field. (11) The collision operator con-
sidered here is a simplified relaxation time model, comparable to the BGK
model of gas dynamics. (16, 17) We are treating a dimensionless version where
the relaxation time has been chosen as reference time.

A mathematical treatment of (1) has been started in refs. 5 and 6,
where macroscopic limits have been computed formally. In ref. 7, the
whole space problem (W=Rd) is considered and existence of weak solu-
tions of the initial value problem is proven. Also, macroscopic conservation
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laws, an entropy dissipation equality, and the propagation of higher order
moments is shown. For the initial data, several strong assumptions are used
in ref. 7, such as boundedness, existence of moments up to the second order
and, most importantly, a positivity assumption guaranteeing that vacuum
is avoided.

In Section 3 of the present work, an existence theorem under milder
assumptions is proven. In particular, the occurrence of vacuum is allowed.
Also the result is stronger compared to that in ref. 7 in the sense that weak
solutions are shown to be mild solutions. Although we restrict our atten-
tion to bounded position domains with reflective boundaries, our results
can be easily carried over to the whole space problem. In Section 3 we also
prove results on the propagation of moments and on the validity of
macroscopic conservation laws, formally derived in Section 2.

Our results for the long time behaviour of solutions of (1)–(5) corre-
spond to those of Desvillettes (8) for gas dynamics. In particular, in Section 4
we prove that, on a compact time interval shifted to infinity, the solution

of (1)–(5) converges to a solution of (1), (5), lying in the null set of the
collision operator. This result is complemented in Section 5 by the compu-
tation of all smooth equilibrium solutions of (1) and by the identification of
the subset satisfying the boundary conditions (5).

We conclude the introduction by mentioning questions this work
leaves open. The set of solutions of (1), (5), constructed in Section 5, is
infinite dimensional, a fact which relies on the nature of the collisions, for
which in the homogeneous case all isotropic functions are solutions. On the
other hand, only a finite number of conserved quantities is given in Section 3.
Therefore, the large time limit cannot be determined uniquely from the
initial data. This also inhibits attempts to obtain stronger convergence
results including the rate of convergence by an entropy–entropy dissipation
approach for nonhomogeneous kinetic equations, recently developped by
Desvillettes and Villani and carried out for different linear models (9, 12) and
for the Boltzmann equation. (10) For future work we leave the idea to over-
come the underdetermination by imposing thermalizing boundary condi-
tions forcing the solution to a given global equilibrium function (cf. refs. 1
and 3 for the Boltzmann equation).

2. PRELIMINARIES

First, we collect some formal properties of the collision operator (see,
e.g., ref. 7).

Lemma 1. Let u ¥ Rd, f, g ¥ C.

0 (Rd), f, g \ 0, rf > 0, j ¥ C.([0, .)).
Then
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(i) Symmetry: >R
d Qu(f) g dv=>R

d fQu(g) dv.

(ii) Collision invariants: >R
d Qu(f) j(|v − u|) dv=0.

(iii) Equilibrium: Quf
(f)=0, if and only if there exist u ¥ Rd and

F ¥ C.

0 ([0, .)), such that f(v)=F(|v − u|2/2).

(iv) H-theorem: For monotonically increasing q,

F
R

d
Qu(f) q(f) dv=−F

R
d

[f − Pu(f)][q(f) − q(Pu(f))] dv [ 0.

Since the collision invariants of the form j(|v − uf |) depend nonlocally
on the distribution function they do not lead to conservation laws. The
only f-independent collision invariants of Quf

are linear combinations of 1,
the components of v, and |v|2=|v − uf |2 − |uf |2+2uf · v. Local conservation
laws (for mass rf, momentum mf, and energy Ef=>R

d
|v| 2

2 f dv) are only
produced by these:

“t
R rf

mf

Ef

S+Nx · F
Rd
R v

v é v

v |v|2/2

S f dv=0. (7)

Note that, by the symmetry of the momentum flux tensor, we also have
conservation of the d(d − 1)/2 components of angular momentum:

“t F
R

d
(xivj − xjvi) f dv+Nx · F

Rd
v(xivj − xjvi) f dv=0, (8)

1 [ i < j [ d. For the determination of globally conserved quantities in
(1)–(5), we have to consider the effect of the reflexive boundary. The
boundary conditions (5) conserve mass and energy such that these quanti-
ties are globally conserved:

F
W

Rrf

Ef

S dx=F
W

Rrf0

Ef0

S dx. (9)

For reverse reflexive boundaries (6b) no other conserved quantities are
known. In the case of specular reflection (6a) the component of angular
momentum corresponding to the index pair (i, j) is globally conserved, if W

has the corresponding rotational symmetry, i.e., with (x1,..., xi,..., xj,..., xd)
¥ W, all points (x1,..., `x2

i +x2
j cos j,..., `x2

i +x2
j sin j,..., xd), j ¥ R, also
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belong to W. Then, for the flux of angular momentum through the bound-
ary “W we have

F
“W

F
R

d
(n · v)(xivj − xjvi) f dv ds=2 F

“W

(xinj − xjni) F
R

d
(n · v)2 f dv ds=0,

since xinj − xjni=0 in the rotationally symmetric case. Consequently,

F
W

F
R

d
(xivj − xjvi) f dv dx=F

W

F
R

d
(xivj − xjvi) f0 dv dx. (10)

More generally, every (d − 2)-dimensional affine space in Rd can serve
as ‘‘rotation axis’’ instead of the subspace {xi=xj=0}. Summarizing,
the number of globally conserved quantities in (1)–(5) is between 2 and
2+d(d − 1)/2 ( the latter, when W is a ball with specularly reflecting
boundary).

The H-theorem Lemma 1(iv) with q=pfp − 1, p > 1, leads to the
entropy dissipation equality

“t F
W

F
R

d
fp dv dx=−p F

W

F
R

d
[f − Puf

(f)][fp − 1 − Pu(f)p − 1] dv dx, (11)

playing a central role in our study of the convergence to equilibrium below.
In the existence analysis, we shall use continuity properties of the

collision operator (derived in ref. 7):

Lemma 2. Let y > 0, 1 [ p, q [ ., f ¥ Lq((0, y); Lp(W × Rd)),
lim n Q . un=u in L1((0, y) × W)d. Then

(i) lim n Q . Pun
(f)=Pu(f) in Lq((0, y); Lp(W × Rd)) for p, q < .,

(ii) ||Pu(f)||Lq((0, y); Lp(W × R
d)) [ ||f||Lq((0, y); Lp(W × R

d)).

In the existence analysis below, the semigroup generated by the free
streaming operator subject to the reflecting boundary conditions is used.
The solution operator T(t) for

“t f+v · Nx f=0,

subject to (2), (5), i.e., f(t, x, v)=(T(t) f0)(x, v), is a strongly continuous
positivity preserving contraction semigroup on Lp(W × Rd) for 1 [ p < .

(see ref. 4, Section 9.3). A mild formulation of (1)–(5) is then given by the
Duhamel formula

f(t)=e−t T(t) f0+F
t

0
e s − tT(t − s) Puf

(f)(s) ds. (12)
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Note that solutions of (12) are also weak solutions on finite time intervals
(0, y) in the sense that (2)

F
D

f(“tj+v · Nxj) dv dx dt+F
W

F
R

d
f0j(t=0) dv dx

=F
D

fQuf
(j) dv dx dt, (13)

for all j ¥ Dy={j ¥ C.

0 ([0, y) × Wa × Rd) : j satisfies (5)}.

3. EXISTENCE AND CONSERVATION LAWS

The existence proof follows the approach of ref. 7 extended by a final
step where solutions with vacuum regions are allowed.

As a first step we solve a linearized problem.

Lemma 3. Let (3) hold and u ¥ L.((0, .) × W) be given. Then

f(t)=e−tT(t) f0+F
t

0
e s − tT(t − s) Pu(f)(s) ds (14)

has a unique nonnegative solution f ¥ C([0, .); Lp(W × Rd)) satisfying

||f(t)||Lp(W × R
d) [ ||f0 ||Lp(W × R

d). (15)

Proof. Existence and uniqueness are the consequence of a standard
contraction argument. The estimate (15) follows from the contractivity of
T(t), Lemma 2(ii), and an application of the Gronwall lemma. Continuity
in t is a straightforward consequence of (14) and of Lemma 2. L

The next result is concerned with the propagation of moments in the
linear problem.

Lemma 4. Let the assumptions of Lemma 3 and (4) hold. Then, for
the solution of (14), (1+|v| r) f ¥ L.

loc([0, .); L1(W × Rd)) holds.

Proof. In the weak formulation

F
D

f(“tj+v · Nxj) dv dx dt+F
W

F
R

d
f0j(t=0) dv dx

=F
D

Qu(f) j dv dx dt, (16)
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of (14) we choose as a test function j(t, x, v)=h(t) F(|v|2/V)(1+|v| r) ¥ Dy

with h ¥ C.

0 ([0, y)), F ¥ C.

0 ([0, .)), F(y)=1 for y < 1, V > 0. Using
(a+b)r [ cr(a r+b r), we estimate

F
R

d
(1+|v| r) Pu(f) dv [ cr F

R
d

(1+|v − u| r+|u| r) Pu(f) dv

=cr F
R

d
(1+|v − u| r+|u| r) f dv

[ Cr F
R

d
(1+|v| r+|u| r) f dv, (17)

where Cr=c2
r +cr is a constant depending only on r. Since u is bounded,

we estimate further

Cr F
R

d
(1+|v| r+|u| r) f dv [ c F

R
d

(1+|v| r) f dv (18)

to show that the limit of (16) as V Q . implies a differential inequality of
the form

d
dt

F
W

F
R

d
(1+|v| r) f dv dx [ c F

W

F
R

d
(1+|v| r) f dv dx.

The proof of the lemma is now completed by an application of the
Gronwall lemma. L

Our first result for the nonlinear problem (1) assumes vacuum avoid-
ing initial data (like in ref. 7).

Theorem 1. Let (3), (4) hold. Moreover, assume f0(x, v) \ g(|v|)
with g having strictly positive density rg \ c > 0. Then (1) has a mild,
global, nonnegative solution f ¥ C([0, .); Lp(W × Rd)) satisfying (15),
(1+|v| r) f ¥ L.

loc([0, .); L1(W × Rd)), and uf ¥ L.

loc([0, .); L1(W)).

Proof. The proof follows along the lines of the proof of Theorem 1
in ref. 7 and is only outlined here.

As in refs. 7 and 16, we introduce a velocity truncation

jn(u)=˛u for |u| [ n,

n
u
|u|

for |u| > n.
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Then the solvability of the regularized problem

fn(t)=e−tT(t) f0+F
t

0
e s − tT(t − s) Pun

(fn)(s) ds, (19)

with un=jn(ufn
) is shown by a fixed point iteration on the mean velocity,

where the fixed point operator involves solving linear problems as in
Lemma 3. Lemma 4 is used for the control of moments providing com-
pactness of the mean velocity by an averaging lemma and by the boun-
dedness from below of the mass density.

For passing to the limit n Q ., we need uniform bounds on moments
of fn. We proceed as in the proof of Lemma 4. Only the estimate (18) with
un and fn instead of u and f needs to be redone without using boundedness
of the velocity. Since, obviously, |un | [ |ufn

| holds, we estimate

Cr F
R

d
(1+|v| r+|un | r) fn dv [ c F

R
d

(1+|v| r) fn dv,

where we have used

rf |uf | r [ F
R

d
|v| r f dv,

an application of Jensen’s inequality (for the convex function v Q |v| r with
the measure f/rf). This simple estimate replaces the use of more elabo-
rated controls of moments as necessary for the BGK-model. (17) The con-
vergence in L1((0, y) × W) of un=jn(ufn

) to uf (where f is the weak limit
of fn) is shown as in ref. 7. The limit n Q . in the weak version of (19)
(compare (13)) can now be carried out (applying Lemma 2), and the proof
is complete. L

In the next step, we remove the assumption of positive densities. For
this purpose we have to extend the definition of the collision operator in a
trivial way: Let f, vf ¥ L1(Rd), f \ 0. Then Q(f) :=P(f) − f with

P(f) :=˛Puf
(f) for rf > 0,

0 for rf=0.

Note that Lemma 2(ii) remains true for P (instead of Pu). Also the state-
ments of Lemma 1 obviously remain true for Q (instead of Qu and Quf

).
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Theorem 2. Let (3), (4) hold. Then (1) (with Quf
replaced by Q) has

a mild, global, nonnegative solution f ¥ C([0, .); Lp(W × Rd)) satisfying
(15) and (1+|v| r) f ¥ L.

loc([0, .); L1(W × Rd)).

Proof. For n ¥ N, the modified initial data

f0n(x, v)=f0(x, v)+
1
n

e−|v|2

satisfy the assumptions of Theorem 1 guaranteeing the existence of a weak
solution fn of (12) (with f0 replaced by f0n). Note that f0n satisfies (3) and
(4) uniformly in n.

By (15), fn is bounded in L.((0, .); Lp(W × Rd)) uniformly in n and,
thus, a subsequence converges weakly to a limit f. Compactness of the
moments up to order 1 is deduced as above, such that, for a further sub-
sequence, we have

rfn
Q rf, mfn

Q mf in L1(G),

with G=(0, y) × W. By the Egoroff theorem, for a further subsequence, rfn

converges almost uniformly on G, i.e., for every e > 0 there exists Ne … G
with |Ne | [ e such that rfn

converges to rf uniformly on G0Ne. Now G0Ne

is decomposed further into subsets Ae and Be, where rf [ e and rf > e

holds, respectively. For a test function j ¥ Dy, the integral

F
G × R

d
(P(fn) − P(f)) j dt dx dv (20)

is also split into three contributions according to the decomposition
G=Ae 2 Be 2 Ne. For the first part we have the estimate

:F
Ae × R

d
(P(fn) − P(f)) j dt dx dv : [ (2e+an) y |W| sup |j|,

with an Q 0 as n Q ., by Lemma 2(ii) and the uniform convergence of the
density. In Be, un=mfn

/rfn
is well defined for n large enough and con-

verges to uf in L1(Be). By the symmetry property Lemma 1(i), the second
contribution to (20) can be written as

F
Be × R

d
(fnPun

(j) − fPuf
(j)) dt dx dv
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which converges to zero for n Q . by the weak convergence of fn, the
strong convergence of un, and by Lemma 2(i). Finally, the third contribu-
tion to (20) is estimated by

:F
Ne × R

d
(P(fn) − P(f)) j dt dx dv : [ sup |j| F

Ne

(rfn
+rf) dt dx.

The right hand side and, thus, (20) tend to zero for n Q ., e Q 0 by the
convergence of rfn

to rf and by |Ne | [ e. This proves that we can pass to
the limit in the weak formulation of the problem for fn. L

In the last result of this section the formal computations of Section 2
concerning entropy dissipation and conservation laws are justified. Proofs
are analogous to those of the corresponding results of ref. 7 and omitted
here. We only note that for local conservation of energy we have to assume
the existence of the energy flux vector initially, since a dispersion result
used in ref. 7 for the whole space problem does not apply here.

Theorem 3. Let the assumptions of Theorem 2 hold. Then:

(i) The entropy dissipation equation (11) holds.

(ii) Let r \ 2 in (4). Then the global conservation laws (9), (10) hold
(the latter in case of specular reflection and rotational symmetry).

(iii) Let r \ 3 in (4). Then the local conservation laws (7), (8) hold in
the distributional sense.

4. CONVERGENCE TO EQUILIBRIUM

Theorem 4. Let the assumptions of Theorem 2 hold with r \ 2 in
(4). Then, for every sequence tn Q ., there exists a subsequence (again
denoted by tn) and a function f. ¥ L.(R; Lp(W × Rd)), such that, for every
T > 0,

fn(t, x, v) :=f(tn+t, x, v) Q f.(t, x, v) weakly in Lp((−T, T) × W × Rd),

Q(f.)=0,

F
R × W × R

d
f.(“tj+v · Nxj) dv dx dt=0,

for every j ¥ C.

0 ((0, T) × Wa × Rd) satisfying the boundary conditions (5),
i.e., f. is an equilibrium solution of the free streaming equation satisfying
the reflection boundary conditions.

1490 Fellner et al.



Proof. We first prove the result with a subsequence possibly
depending on T. Then the statement of the theorem follows from a diago-
nal procedure.

The weak convergence of fn (up to a subsequence) to a limit f.

follows from the boundedness of ||f(t, · , · )||Lp(W × R
d) uniformly in time. By

Theorem 3(ii), rfn
and Efn

are bounded in L1((−T, T) × W) uniformly in n.
The same holds for mfn

by the interpolation

|mf | [ `rfEf [
rf+Ef

2
.

For passing to the limit n Q . we proceed exactly as in Theorem 2 proving
that

“t f.+v · Nx f.=Q(f.)

and the boundary conditions hold in the weak sense indicated in the for-
mulation of the theorem. To prove f. to be an equilibrium distribution, we
apply the entropy dissipation equation (11) (valid by Theorem 3(i)). As
a first step we note that the assumptions (3), (4) imply the validity of
assumption (3) also for every q between 1 and p by interpolation. Let us
pick, in particular, q=min{p, 2}. The entropy dissipation equation (11)
then implies

F
.

0
F

W

F
R

d
[f − P(f)][fq − 1 − P(f)q − 1] dv dx dt < .,

and, hence,

F
T

−T
F

W

F
R

d
[fn − P(fn)][fq − 1

n − P(fn)q − 1] dv dx dt

converges to zero. The convexity and definiteness of the function C(x, y)=
(x − y)(xq − 1 − yq − 1) for 1 < q [ 2 and the weak convergence of fn and
P(fn) allow to pass to the limit and conclude

f.=P(f.),

completing the proof. L
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5. SMOOTH EQUILIBRIUM SOLUTIONS

In this section we compute all smooth solutions of the system

“t f+v · Nx f=0, Q(f)=0. (21)

In a second step, we shall identify those solutions satisfying the reflecting
boundary conditions (5). We remark that we have to leave open the gap
between the above weak convergence result and the consideration of
smooth solutions.

We distinguish between subsets of (t, x)-space where the density rf

(and, thus, the distribution function f) vanishes and where rf is positive.
The following arguments holds for a connected component D … Rd+1 of
{rf > 0}. Then, by Q(f)=0, there exists a mean velocity u(t, x) and a
function F(t, x, t) such that

f(t, x, v)=F 1 t, x,
|v − u(t, x)|2

2
2 .

Substituting this representation into the free streaming equation and
introducing the change of variables v W (t, w) ¥ [0, .) × Sd − 1, defined by
v=u+w `2t, gives

− (2t“tF) w tr(Nxu) w+`2t w · (NxF − “tFDtu)+DtF=0, (22)

where w tr is the transpose of w and the material derivative is denoted by
Dt=“t+u · Nx. We exploit this equation using the following simple linear
algebra lemma.

Lemma 5. Let A ¥ Rd × d and b ¥ Rd. Then

w trAw+w · b=0 for all w ¥ Sd − 1 (23)

holds iff b=0 and A is skew-symmetric.

Proof. The matrix A can be replaced by its even part Ã=1
2 (A+A tr)

in (23). The odd part can be arbitrary. By a rotation of w, Ã can be
assumed as diagonal. The choices w=± ej, j=1,..., d prove Ã=b=0. L

Keeping (t, x, t) fixed and varying w ¥ Sd − 1 in (22), we deduce that

NxF=“tFDtu (24)
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holds, and that the matrix

A=DtF Id − 2t“tF Nxu

is skew-symmetric. Application of the curl to (24) leads to

0=(“t“xi
FDtuj − “t“xj

FDtu i)+“tF(“xi
Dtuj − “xj

Dtu i),

for 1 [ i < j [ d. Using (24) again for the computation of the components
of NxF shows that the first term vanishes. Also the existence and positivity
of the macroscopic density in D implies that for every (t, x) ¥ D there exists
t > 0 such that “tF(t, x, t) ] 0. Thus, the curl of Dtu vanishes in D. This
implies that locally in D a potential g̃(t, x) exists such that

Dtu=Nx g̃

holds. Now (24) implies the existence of a function F0(t, z) such that

F(t, x, t)=F0(t, t+g̃(t, x)). (25)

The fact that the diagonal elements of A vanish, imply that the diagonal
elements of Nxu are identical, “xi

u i(t, x)=s(t, x), and

Aii=“tF0+“zF0(Dt g̃+2sg̃ − 2zs)=0. (26)

Similarly to above, we argue that for every t in the projection of D onto the
t-axis there exists a z-interval of positive length, such that “zF0(t, z) ] 0.
This implies that the coefficients Dt g̃+2sg̃ and s in (26) are independent
of x. By (26), F0 can be written in the form F0(t, z)=k(a(t) z+b(t)) and,
therefore, for F we have F(t, x, t)=k(a(t) t+g(t, x)) (with g=ag̃+b).
Returning to the equation A ii=0, we deduce

ȧ=2sa, ( ·̇ )=
d ·
dt

, (27)

Dt g=0. (28)

More information on the form of a(t) and g(t, x) is derived similarly to
Desvillettes. (8) The gradient of the vector field u(t, x) − s(t) x is skew-
symmetric. From Lemma 1 in ref. 8 we conclude that u can be written in
the form

u(t, x)=s(t) x+L(t) x+C(t)
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with skew-symmetric L(t). Inserting this representation in

Nx g=aDtu, (29)

(which is a consequence of (24)) leads to the necessary condition L̇+2sL

=0 and, thus, L(t)=L0/a(t), for the right hand side of (29) to be a
gradient (L0 is an arbitrary constant skew-symmetric matrix). Now (29) is
integrated with respect to x and the result is substituted in (28). The left
hand side of (28) becomes a quadratic polynomial in x. Equating coeffi-
cients to zero gives a system of ordinary differential equations for the
unknown t-dependent quantities, which can be solved explicitly. We omit
the details of the computation and only state the result: The distribution
function can be written in the form

f(t, x, v)=k 1a(t)
|v − u(t, x)|2

2
+g(t, x)2 . (30)

There exist three constant scalars a, b, c ¥ R, two constant vectors
A, B ¥ Rd, and a constant skew-symmetric matrix L0 ¥ Rd × d such that

a(t)=at2+2bt+c,

g(t, x)=
ac − b2

a(t)
|x|2

2
−

|L0x|2

2a(t)

+1A+
1

a(t)
(L0 − at − b)(At+B)2 · x −

|At+B|2

2a(t)
,

u(t, x)=
1

a(t)
((at+b) x+L0x+At+B).

(31)

So far this holds only locally in D. We intend to make the result global. Let
us consider the intersection of the domains of two local representations of
the form (30), (31). We shall prove that the function k and the constants
have to be the same in both representations. However, an obvious source
of nonuniqueness has to be eliminated first. We require a(t) > 0 and a
normalization of the coefficients of a(t): a2+b2+c2=1. This can be
achieved by a rescaling of the argument of k. At zeroes of a(t) velocity
moments of the distribution (30) are not defined, hence the restriction to
time intervals where a(t) does not change sign.

The mean velocity u(t, x) has to be the same in both representations
and, thus, also the diagonal elements ȧ/(2a) of its gradient. With the
normalization condition this implies that a(t) and therefore also the coef-
ficients a, b, and c are the same. Now it is an easy consequence of the
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formula for u in (31) that also the other coefficients L0, A, and B are the
same. Finally, we conclude that the functions k in both representations
have to be identical.

Summarizing, we have proven the following.

Theorem 5. Let f be a smooth solution of (21), and let D be an
open connected subset of Rd+1 where rf is positive. Then, for (t, x) ¥ D,
v ¥ Rd, f(t, x, v) can be written in the form (30), (31).

Finally, we study the effect of reflecting boundary conditions. In the
work by Desvillettes (8) on the Boltzmann and BGK equations it is shown
that for Maxwellian equilibria (i.e., k(y)=e−y) solving the free streaming
problem with reflexive boundaries, vacuum cannot occur locally. The proof
can easily be extended to any strictly positive k. It essentially relies on the
fact that particles are spread with arbitrary velocities. In the more general
situation discussed here, where k may have compact support, vacuum
regions can be part of an equilibrium distribution. For a classification of
solutions of the form (30), (31), and the interplay between vacuum and non-
vacuum regions we refer to ref. 13. Here we only discuss a special situation
needed below, namely non-vacuum islands within a vacuum region. These
are defined by inequalities of the form

g(t, x) [ g0, (32)

assuming k(g)=0 for g \ g0. The inequality (32) defines a bounded region
in x-space iff the matrix (ac − b2) Id+L2

0 is positive definite. In ref. 13 it is
shown that the form (30), (31), is invariant under Galilean transformations
x Q x+x0+v0t, v Q v+v0, and that the regularity of (ac − b2) Id+L2

0 is
sufficient for eliminating the vectors A and B by an appropriate choice of
x0 and v0. Thus, after the Galilean transformation, (32) can be written as

x tr((ac − b2) Id+L2
0) x [ 2g0a(t).

Therefore, the nonvacuum region is an ellipsoid growing with time, whose
center moves with constant velocity. The significance of this result for the
following is that non-vacuum islands cannot be contained in bounded
domains for large times.

First, we consider the case of reverse reflection boundary conditions.

Theorem 6. Let f(t, x, v) be a smooth solution of (21) for (t, x, v) ¥

(0, .) × W × Rd, satisfying the boundary conditions (5), (6b). Then

f(t, x, v)=k(|v|2), (33)

for an appropriate function k.
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Proof. Assume first that there exists a time t0 > 0 and a position
x0 ¥ “W such that rf(t0, x0) > 0. Then rf is positive in a neighbourhood
D … (0, .) × Wa of (t0, x0). By Theorem 5, f is of the form (30), (31) in D,
and the boundary condition implies that the mean velocity vanishes along
the boundary:

(at+b) x+L0x+At+B=0, (t, x) ¥ D, x ¥ “W.

By varying t, ax+A=bx+L0x+B=0 holds for x ¥ “D 5 “W. Varying x
in the first equation implies a=A=0. On the other hand, it is easily shown
that the rank of a matrix of the form b Id+L0 with skew-symmetric L0

cannot be 1. Therefore, if b or L0 do not vanish, the system bx+L0x+B
=0 defines a set of codimension bigger than 1, which cannot contain the
hypersurface “D 5 “W. This implies b=L0=B=0, proving that f is of the
desired form (33) in D and, by smoothness, D=(0, .) × Wa .

It remains to consider the situation when rf=0 on (0, .) × “W. Then,
if the total mass is positive, W must contain a non-vacuum island.
However, by the above arguments, this situation cannot persist as t Q ..
The non-vacuum region eventually has to contain part of the boundary,
putting us back into the case considered previously. L

Theorem 6 is a complete result for the reverse reflection case. For
specular reflection, the situation is more complicated.

Theorem 7. Let f(t, x, v) be a smooth solution of (21) for (t, x, v) ¥

(0, .) × W × Rd, satisfying the boundary conditions (5), (6a). Suppose the
boundary of the x-component W̃(t)={x ¥ W : (t, x) ¥ D} of a nonvacuum
region D (as above) contains the boundary of W: “W … “W̃(t), for
t1 < t < t2. Then

f(t, x, v)=k(|v|2+v trL0(x − x0)), (34)

for an appropriate function k, a skew symmetric matrix L0, and a point x0,
such that W is invariant under rotations of the form x W P(x)+eL0sx,
s ¥ R, where P denotes the orthogonal projection onto the rotation axis
defined by L0(x − x0)=0. If W does not have any rotational symmetry,
f(t, x, v)=k(|v|2) holds.

Proof. For specular reflection boundary conditions the mean velocity
satisfies u(t, x) · n(x)=0 along the boundary, implying (ax+A) · n(x)=0
and (bx+L0x+B) · n(x)=0 for x ¥ “W. Therefore solutions of the ODEs

dx
ds

=ax+A,
dx
ds

=bx+L0x+B (35)
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with initial data on “W remain on “W, which is a bounded set. However,
solutions of (35) only remain bounded iff a=b=A=0 and B ¥ rg L0. The
solutions of the second ODE then describe rotations around an axis
determined by L0(x − x0)=0, where we have set B=−L0x0.

So far we have shown that W̃(t) is independent of t and that the
representation (34) is valid for (t, x) ¥ (0, .) × W̃. We cannot exclude
the possibility, however, that W contains a vacuum region away from the
boundary. By the arguments already used previously, there cannot exist a
non-vacuum island within this vacuum region and, thus, (34) holds for all
x ¥ W. L

Remark 1. Taking a closer look at the situation discussed at the end
of the proof, we note that a vacuum region in the interior of the domain
would be defined by an inequality of the form |L0(x − x0)| [ const. Since
the rank of a skew symmetric matrix is even, this inequality can only
describe a bounded region, iff the space dimension d is even.

The question arises if the result of the preceding theorem remains true
even without the assumption of non-vacuum along the whole boundary.
We conjecture that the answer is positive for d=3 and prove the corre-
sponding result for the case when W is a ball. Finally, an example will show
that the answer is negative for d > 3.

Theorem 8. Let W be a ball in R3 with center x0, and let f(t, x, v)
be a smooth solution of (21) for (t, x, v) ¥ (0, .) × W × R3, satisfying the
boundary conditions (5), (6a). Then f can be written as (34) with an
appropriate function k and a skew-symmetric matrix L0.

Proof. As in the proof of Theorem 6, it suffices to consider the case
where a non-vacuum region D extends to the boundary. As in the proof of
Theorem 7, solutions of (35) with initial data on “D 5 “W remain on the
boundary. When a or A are different from zero, the solution trajectories
of the first equation are straight lines which cannot be part of a sphere.
Therefore, a=A=0.

For solutions of the second ODE, the requirement (x − x0) · dx/ds=0
for remaining on the sphere leads to

bR2+(bx0+L0x0+B) · (x − x0)=0

for all x ¥ “D 5 “W, where R denotes the radius of the sphere. However, for
bx0+L0x0+B ] 0 this defines a hyperplane, which cannot contain a non-
trivial part of a sphere, implying b=0 and B=−L0x0. Thus, the solution
is of the form (34) in D and the x-component of D is the intersection of the
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ball W with the exterior of a cylinder. In three-dimensional space there can
only be one non-vacuum region of this form. Interior non-vacuum islands
can be excluded like above and the proof is complete. L

Remark 2. The proof can be extended to more general domains
whose boundaries do not contain solution trajectories of the ODEs (35).

Finally, we present a solution for W being the ball with center at the
origin and radius R in R4 with specularly reflecting boundary, which is not
of the form (34): Let 0 < r1, r2 < R, and r2

1+r2
2 \ R2. Let W1 be the sub-

domain of W defined by x2
1+x2

2 > r2
1, and W2 be accordingly defined by

x2
3+x2

4 > r2
2. Then W1 and W2 are nonempty and do not intersect. Equilib-

rium solutions of the form (34) with x0=0, the skew symmetric matrices

L1=R 0 l1 0 0
− l1 0 0 0

0 0 0 0
0 0 0 0

S , L2=R0 0 0 0
0 0 0 0
0 0 0 l2

0 0 − l2 0

S ,

and x-supports in W1 and W2, respectively, can be defined by choosing the
appropriate k-functions with compact support. Because of W1 5 W2={}
the sum of these solutions is also an equilibrium solution, but not of the
form (34).
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